Since
neutrons are spin half particles, one may consider that, in the absence of a
magnetic field, their behavior should be correctly described by the Dirac equation.
In the case with a gravitational field, described by a curved space-time, the
Dirac equation is usually modified to the form derived independently by Weyl and
by Fock in 1929, hereafter the Dirac-Fock-Weyl (DFW) equation. We can try to
study the physical consequences of the DFW equation, naturally in the framework
of its weak-field and/or non-relativistic limit, but the corrections to the
non-relativistic Schrödinger equation in the Newtonian gravity potential are
usually very small. For instance, in the experiments on gravitational stationary
states, one uses ultra-cold neutrons in the Earth’s gravitational field . It has
been shown recently that, in this particular case, the corrections brought by
the DFW equation to the non-relativistic Schrödinger equation in the gravity
potential are quite hopelessly negligible. Nevertheless, one may expect that,
in the future, experiments (possibly using lighter neutral particles: massive
neutrinos?) should be able to check this kind of corrections and, therefore, to
distinguish between possible competing gravitational extensions of relativistic
quantum mechanics.
Aucun commentaire:
Enregistrer un commentaire